
Crystallization of polymers

A personal view on a lifetime in research

Vincent B. F. Mathot

NATAS2009 Special Issue
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Abstract In the past 35 years, the emphasis of the

activities has been doing and stimulating of fundamental

research; managing research toward improvement and

development of polymer systems and industrial applica-

tions of polymers; and providing analytical support by

utilization and development of characterization techniques

and methods. Throughout, the research activities concerned

the study of molecular structure, crystallization and melt-

ing, morphology, and thermal properties of polymeric

systems, and to study and understand the relations between

these topics. With respect to Thermal Analysis & Calo-

rimetry (TA&C), quantitative research has been realized in

the field of crystallization of polymers of which a choice of

recent work is discussed.
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Introduction

In the past 35 years, the emphasis of the activities has been

doing and stimulating of fundamental research at DSM

Research and (for a decade) at the Katholieke Universiteit

Leuven, Belgium [with B. Goderis, G. Groeninckx, H.

Reynaers]; to manage research at DSM toward improve-

ment and development of polymers and toward industrial

applications; and to provide analytical support. Since 2003,

activities are also continued through SciTe B.V., short for

Science & Technology, which is a Small and Medium

Enterprise. Throughout, the research activities concerned

molecular structure, crystallization and melting, morphol-

ogy, and thermal properties of polymeric systems.

With respect to Thermal Analysis & Calorimetry

(TA&C), quantitative research—triggered by the pioneer-

ing work of A. Gray, M. Richardson and B. Wunderlich—

has been realized over more than three decades [with S. de

Boer, L. Dirks, M. Pijpers, J. van Ruiten, R. Scherrenberg,

J. Smeets, E. van der Vegte] within the central TA&C

group of DSM Research, providing an output [by typically

four Full-Time Equivalents (FTEs)] for the main tech-

nique—DSC—of typically 12,000 high-quality curves with

interpretations a year.

One class of polymers where the unraveling of the

molecular structure has benefitted substantially from

TA&C has been the polyolefins [1], for example hetero-

geneous ethylene copolymers like linear low-density

polyethylene (LLDPE) and very low-density polyethylene

(VLDPE). In combination with appropriate (cross) frac-

tionation methods [A. Brands, W. Bunge, N. Meierink, H.

Schoffeleers], both molecular structure and morphology

[R. Deblieck] were clarified at a very early stage (1984),

because knowledge resulting from earlier fundamental

studies in the field on linear polyethylene (LPE), high-

V. B. F. Mathot (&)

SciTe B.V, Ridder Vosstraat 6, 6162 AX Geleen,

The Netherlands

e-mail: vincent.mathot@scite.nl; vincent.mathot@gmail.com

V. B. F. Mathot

Division of Molecular and Nanomaterials, Department

of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan

200F, Heverlee 3001, Belgium

123

J Therm Anal Calorim (2010) 102:403–412

DOI 10.1007/s10973-010-0947-x



density polyethylene (HDPE), low-density polyethylene

(LDPE), ultra high molar mass polyethylene or ultra high-

molecular-weight polyethylene (UHMWPE), and ethylene-

based (E..) copolymers was already built up. From the start

of the research on copolymer [H. Suzuki] crystallization [F.

Balta Calleja, P. van Ekeren, S. Vanden Eynde, A. Flores,

U. Gedde, M. Hedenqvist, G. Höhne, T. Madkour G.

Michler, C. van Miltenburg, B. Neway, M. Peeters, J.

Schawe] has been a topic. Starting with the theories by

Flory and Kilian, the proper background based on ther-

modynamics for in-depth studies was obtained, which led

to an adaption of the Flory theory (which was approved by

him) for crystallites having finite lateral dimensions as in

practice [still unpublished]. This was a first step toward

studies under realistic conditions, and it linked up with

another realistic approach, the cold crystallization theory

by Wunderlich. Because kinetics usually overrules ther-

modynamics; nowadays the best results are obtained by

dynamic Monte Carlo simulation of crystallization, melt-

ing, and morphology, resulting in a series of papers on

crystallization [D. Frenkel, W. Hu]. Excitingly, it was even

possible to calculate DSC- and crystallinity curves of

copolymers, both in cooling and heating, showing the well-

known hysteresis related to supercooling. The input nee-

ded—realistic copolymer chains—led also to establishing

the ‘missing link’ between polymerization [N. Friederichs,

D. Joubert, W. Kaminsky, C. Piel, B. Wang] and the

resulting molecular structure by modeling [Ch. Fabrie, E.

Karssenberg, T. Tiemersma, T. Zwartkruis] of state-of-the-

art whole NMR spectra [P. Adriaensens, J. Gelan, G. van

der Velden].

A study [2] on dynamic crystallization of LPE and into

determination of a realistic-free enthalpy (Gibbs-free

energy) change function or Dg(T), the driving force for

crystallization, coincided with the development of the

Regime theory by Hoffman. Especially Regime III was of

interest for industry because it described nucleation and

growth at high supercoolings, like under processing con-

ditions. Hoffman was aware of the fact that the driving

force, used in all crystallization theories, was temperature

dependent. Therefore, for large supercoolings he proposed

various approximations, the best known being a modifica-

tion of the approximation normally used, Dg(T) =

Dh(Tm)DT/Tm, into Dg(T) = Dh(Tm)DT/Tm � T/Tm, which

was in fact a best guess at the time (1958). It was shown [2,

3] that nowadays such approximations have to be replaced

by the Dg(T) as based on experimental (specific) heat

capacity, cp(T), data. In general, functions like Dcp(T),

Dh(T), Ds(T), Dg(T)—named reference differential func-

tions—are obtained by subtracting the so-called reference

functions for the extreme states of matter in case the two-

state model applies [4], meaning that molecules are thought

to be in one of two states: in the liquid (amorphous or melt)

state or in the solid (crystalline or glass) state, represented

by the reference functions of the extreme states possible (as

usually indicated by indices a and c, respectively): cpa(T);

ha(T); sa(T); ga(T) and cpc(T); hc(T); sc(T); gc(T), respec-

tively. These reference functions and the reference differ-

ential functions like the reference differential-free enthalpy

(Gibbs-free energy) function or driving force Dg(T) =

ga(T) - gc(T) nowadays can be obtained via the ATHAS

databank [M. Pyda, B. Wunderlich]. Other reference dif-

ferential functions are of interest too, like, for example,

Dh(T): the temperature-dependent enthalpy of transition [or

heat of melting (‘fusion’)/crystallization]: it is not a con-

stant value.

Applying this thermodynamic background, one can

utilize the concept further by comparing the results of a

quantitative experiment, either cp(T) or dq/dT (q stands for

Q/m, the specific heat), with the reference functions.

Firstly, this enables to judge the quality of the experiment.

Secondly, it permits to determine interesting functions like

the crystallinity as function of temperature, wc(T), as well

as the basis-line cpb(T) and the excess cpe(T). A topic still

not completely addressed is the use of a three-state model

in case of a Rigid Amorphous Fraction [J. van Ruiten].

Such a study should preferably be combined with other

techniques, like dielectric spectroscopy [A. de Rooij, J.

Tacx, J. van Turnhout, M. Wübbenhorst] and especially

X-ray and solid-state NMR, because only then a full-

morphological model can be constructed [M. Basiura, W.

Bras, J. Janicki, M. Koch, V. Litvinov, S. Rabiej, T. Ryan,

R. Scherrenberg, C. Vonk, M. Wevers].

With regard to industrial utilization of TA&C [5–9], the

applicability of new techniques to polymeric systems, like

temperature-modulated DSC and TM reaction calorimetry

[A. van Hemelrijck, R. Scherrenberg, P. Steeman, E. van

der Vegte], and scanning thermal microscopy [H. Pollock,

R. Smallwood] have been scrutinized. A break-through was

realized by the development and application of high per-

formance DSC (HPer DSC) [M. Pijpers, G. Vanden Poel],

as followed by its commercial equal: the HyperDSC of

Perkin-Elmer. This development is part of a move toward

exploration of fast scanning calorimeters (FSC), with

exponents like the recently introduced RHC of TA

Instruments and especially the Fast Scanning (chip) Calo-

rimeter [C. Schick, R. Tol]. The rationale for this devel-

opment is that, in practice, quite some processes occur at

much higher rates than realizable using Standard DSC and,

secondly, most materials and substances, including poly-

mers and pharmaceuticals, are in metastable states. Ther-

mal history—specifically cooling and heating rates—and

sample/product treatment can change their behavior dras-

tically, influencing end properties. Phenomena related to

metastability are well known to polymer scientists; daily

they encounter super cooling, amorphization, ‘hot’
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crystallization, cold crystallization, recrystallization (after

melting), annealing, etc. In addition, among the many

advantages of HPer DSC, measuring on minute amounts—

down to the microgram level—of materials is possible, like

yields of fractionations [R. Brüll, I. Garcia, L-C. Heinz, A.

Krumme, N. Luruli, H. Pasch].

Heterogeneous-, fractionated-, and homogeneous nucle-

ation in case of polymer blends and composites [W. Bruls,

D. Homminga, M. Salmerón Sánchez] have become topics

for research linking up with studies on confined crystalli-

zation [R. Tol]. Crystallization at much lower temperatures

than usual is realized in case of sub-micrometer dispersions,

and homogenous nucleation is found to happen even without

applying fast-cooling methods. Recently, routes for polymer

systems have been set up which are ‘green,’ e.g., working

with water as a medium for polymer dispersions and as a

solvent. Thus, very stable water-borne dispersions of

homogeneous ethylene-1-octene (EO) copolymers and of

maleic anhydride-grafted polypropylenes (PP-g-MA) were

prepared [L. Bremer, J. Ibarretxe Uriguen]. As in case of the

blends mentioned, again particles having sizes down to sub-

micrometer scale were generated in a controlled way and in

large quantities. Thus, the lowest crystallization peak tem-

perature and the largest extra supercooling ever observed for

PP in analogous experiments, 33 and 77 �C, respectively,

were realized. As another example, based on an in-house

DSM study in 1995, fast and full dissolution of polyamide

(PA) in water can be realized [K. Charlet, J. Devaux, M.

Wevers]. It drastically lowers the temperature of subsequent

crystallization and melting: depressions of 60 to 100 �C

have been measured.

A few of the recent developments sketched [10] are

briefly discussed in this article.

Results and discussion

Fast scanning calorimetry

As hinted at in the ‘‘Introduction’’ section, studying crys-

tallization of real polymers under realistic conditions is of

importance, not only for industry but also from a scientific

point of view, because it provides an opportunity to arrive

at the opposite of thermodynamic equilibrium conditions.

Thus, one has to deal with the dynamics of processes

occurring which is a challenging topic in itself. In order to

approximate conditions of equilibrium, cooling at extre-

mely slow rates, in combination with annealing procedures,

has been applied in the past, also in order to obtain samples

with high crystallinity. By contrast, it would be beneficial

for the understanding of (in)capabilities of chains to crys-

tallize or even amorphize, by cooling them at extremely

high cooling rates. In practice one can find analogous

situations and everything in between the extremes.

Experimentally it is a challenging and very demanding job

to realize fast, controlled cooling at constant rates. In

addition, also fast heating is of interest in order to hinder or

even suppress phenomena like reorganization, recrystalli-

zation, and cold crystallization during heating, solid–solid

transitions; to study superheating, etc. If one can overcome

the difficulties, the benefits are substantial, as it is well

known that thermal history—specifically cooling and

heating rates—and sample/product treatment can change

the behavior of polymer products drastically, influencing

end properties. Thus, the challenge is to realize scan rates

higher than typical rates of Standard DSC, which are

centered on approximately 10 �C min-1.

The development of FSC

In the past decade this challenge has been met by realization

of breakthroughs via the development of various FSC. One

of the highlights was the introduction of HPer DSC (high

performance meaning higher scan rates and still quantitative

operation) [11–13] (see Fig. 1). It has been promoted com-

mercially since then by Perkin-Elmer (the HyperDSC, up to

750 �C min-1 [14]) and recently also by TA Instruments

(the RHC, up to 2000 �C min-1) [15]. Another break-

through was the development of extremely fast operating

chip-calorimeters, as described in papers by Allen et al. and

by Schick et al., see e.g., [16, 17] and references therein.

Figure 2 shows for a PP sample one of the great benefits

of HPer DSC [18]: it can mimic most of the cooling rates

used in processing. Increasing the cooling rate has a drastic

influence on the way of crystallization of polymers: it

occurs at lowered temperatures while the peak area of

crystallization is decreased, meaning that the crystallinity

goes down. Depending on their crystallizability some

Slow

Standard DSC:

High-mass furnace:
simulation of

Low-mass furnaces

wrapping the sample in aluminum foil (3D contact)!
in sample pan (1D contact) or ...

Samples from 1 μg to ~2 mg

temperature
distribution

High

HyperDSCTM (PerkinElmer)

DSC
(HPer DSC)

performance

rate
approx.

10 °C/min

Key-success factors:

rates up to 750 °C/min
and RHC (TA Instruments):

rates up to 2000 °C/min

good conductivities
and low sample mass

Fast scanning calorimetry

Fig. 1 The development of HPer DSC, complementary to Standard

DSC, by improving crucial thermal conductivity paths, including

thermal contact between sample container and sample; decreasing of

the sample mass with increasing scan rate; miniaturization of the

sample container, etc.
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polymers will even become amorphous at a specific cool-

ing rate, e.g., poly-L-lactic acid (PLLA), polyethylene

terephthalate (PET), etc. Others, like LPE, are very difficult

or impossible to amorphize, and one needs a fast scanning

(chip) calorimeter, operating at much higher scan rates,

e.g., up to 106 �Cs-1 [16], to create a chance for amorph-

ization, as it has been done for PP [19] and PA6 [20].

Reorganization phenomena

Polymer scientists are familiar with phenomena related to

metastability like supercooling, amorphization, cold crys-

tallization, recrystallization (after melting) and remelting,

annealing, etc. Figure 3 presents a striking example of the

benefits of enabling a high cooling rate: cooling at a

standard rate of 10 �C min-1 of an LLDPE/LDPE blend

gives rise to a double exotherm in the DSC curve. The

possibility of having two separate crystallization processes

at some cooling stage during film blowing points to a

possible risk of occurrence of demixing phenomena,

leading to heterogeneities, gels, etc., causing all kinds of

problems of mechanical and optical nature. However, from

the measurement at a higher cooling rate of 150 �C min-1,

resulting in a single DSC peak it is obvious that at such a

cooling rate cocrystallization occurs by which the risk of

demixing is negligible. It is clear for this case that the

standard way of measuring at -10 �C min-1 would steer

the film blowing process into a wrong direction with pos-

sible economic consequences.

Although usually by HPer DSC one is able to suppress

recrystallization, reorganization processes in general are

extremely difficult to suppress. Figure 4 shows an example.

Cooling at different rates—here at 1 and 150 �C min-1—is

not reflected in the heating curves at 150 �C min-1, con-

trary to expectation, because one would argue that cooling

at 1 �C min-1 would result in crystallites having larger

dimensions and less imperfect structures compared to

cooling at 150 �C min-1. This is expected to shift (part of)

the heating curve to higher temperatures.

However, as can be seen, the two heating curves are

virtually identical. Obviously, during heating the fast

cooled sample is vulnerable to extensive reorganization

shifting the melting point distribution to higher tempera-

tures. This implies that in such case, by measuring a

heating curve of a sample ‘‘as received’’ the thermal history

cannot be revealed. As a consequence, for this copolymer

sampling of slow/fast cooled parts, like present in a core/

skin product, respectively, resulting from processing,

would give the same results. Here one is tempted to use the

fast scanning chip calorimeter in order to discriminate the

samples also in heating according to the different cooling

histories [20].

Cross fractionation by the SEC-LC transform-DSC

combination

In addition to studying metastability, among the many

advantages of HPer DSC, measuring on minute amounts—

down to the microgram level—of materials, like yields of

fractionations, is possible because of the increased sensi-

tivity provided by the high scan rates,
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Fig. 2 Peak maximum crystallization temperatures from DSC cool-

ing curves, as function of cooling rate and for various sample masses

for a PP, which rates are compared with the cooling rate ranges

covered by the most important processing techniques. Reprinted from

[9] with permission of Elsevier

20 30 40 50 60 70 80 90 100
Temperature/°C

98.9 °C 107.9 °C

Cooling

Cooling

LDPE–LLDPE blend–150 °C/min

–10 °C/min
Sample mass:

4.215 mgdq
/d

T
E

nd
o

10
 J

 (
g 

°C
)–

1

Sample mass:
0.766 mg

96 °C

110 120 130 140
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Reprinted from [9] with permission of Elsevier
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A topic studied recently by HPer DSC addresses an

issue of high importance for industry: the distribution of

short chain branching (SCB) across the molar mass dis-

tribution (MMD) for bimodal HDPE grades. It is well

known that the specific SCB distribution (SCBD) along the

MMD determines the crystallization behavior and by that

the end properties. However, the mechanisms are still not

well understood, and one of the problems inhibiting pro-

gress in this field is the lack of adequate tools for deter-

mination of the actual SCBD as a function of MMD. It has

to be realized that the SCB content is extremely low, and

by that very difficult to measure at the moment. Preferably,

cross fractionation by SCB subsequent to MMD should be

done—which is anyhow the best (unequivocal) way of

starting—but it is extremely difficult to evaluate if done

analytically because of the small amounts of polymer

fractions; or tedious and expensive if done on a preparative

scale. Therefore, almost all research reported in literature

so far have been done the other way around: SCB frac-

tionation (e.g., by TREF) followed by MMD determination

(SEC), with the inherent draw back of crystallization, and

its many governing parameters, being a disturbing factor

already at the start of the fractionation.

Following a new route (see Fig. 5), the fractionation is

performed according to MM using analytical SEC (ASEC),

followed by a study of the crystallization and melting

behavior of the MM fractions by (HPer) DSC instead of a

subsequent, physical crystallizability fractionation. Evalu-

ation of the results also provides information about possi-

ble heterogeneity of the SCBD per MM fraction, even

though the interpretation can be hampered by the occur-

rence of cocrystallization, the influence of entanglements,

etc.

Over the years, the amount of starting material for

ASEC has been decreased from typically 5 mg (20 years

ago) to typically 800 lg of polymer nowadays. Normally,

600–800 lg of a whole polymer on a disk is the maximum

amount to be deposited. However, an HDPE is much more

difficult to deposit because spraying of the low MM frac-

tions is not precise, material gets lost sideways of the disk

and high MM fractions do crystallize at the nozzle. That is

why 200 lg per deposition on a disk is about the maximum

for such polyethylenes at the moment. Therefore, in the

present case, two separate depositions, each of 200 lg, on

one disk (two spots) have been combined. At the start of

this study it was anticipated that the recently developed

HPer DSC could be of help, because compared with

Standard DSC, HPer DSC improves the sensitivity of the

measurement by its capability to realize higher cooling and

heating rates. Indeed, it turned out to be feasible to measure

the minute amounts of fractions resulting from ASEC [21]

[A. Krumme, M. Basiura, T. Pijpers, G. Vanden Poel, L-C.

Heinz, R. Brüll, V. Mathot, to be published].

As a result, Fig. 6 shows that crystallization and melting

of a very high-molar mass fraction of an HDPE can clearly

be studied, even though the sample mass can be as low as

13 lg as in the case shown.

Crystallization/amorphization by cooling

and subsequent cold crystallization by heating

Cold crystallization after hot crystallization

A virgin PET sample usually will stay amorphous during

cooling at a rate of 150 �C min-1. So, when it crystallizes

in cooling from the melt (‘‘hot’’ crystallization), as shown

in Fig. 7 to approximately 10%, most probably the nucle-

ation density has been increased by adding nucleants and/

or the molar mass has been changed, etc. For this sample,

during subsequent heating, the crystallinity increases sub-

stantially by cold crystallization to more than 25%, after

which it decreases again by melting.

Correction for MMD -> SCBDMMD

SEC:

800 μg

Separation according to

LC Transform:

Standard & HPer DSC:

Crystallization and
melting on fractions of
10–150 μg each

Evaporation of solvent,
sputtering polymer on a
Germanium disk,
removal of fractions

MM. Total mass at
elution volume of 200 μL:

Fig. 5 The cross fractionation

route followed, using the

ASEC-LC Transform-DSC

combination, is schematically

shown: fractionation of the

polymer according to MM by

ASEC; subsequent deposition of

the fractions on a rotating disk

using a Lab Connections (LC)

Transform set up; and finally

off-line Standard DSC or HPer

DSC on the fractions. In

between, the fractions on the

disk can be measured by FTIR

as function of MM
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The figure illustrates that working at high scan rates in

combination with low sample masses does not preclude

quantitative measurements. On the contrary, the short time

of measurement should suppress the influence of drift, one

of the major causes of non-reproducibility of DSC mea-

surements, resulting in less-quantitative results. In the

present case a closed loop with respect to crystallinity as a

function of temperature is obtained, showing the consis-

tency of the measurements.

Cold crystallization subsequent to amorphization

as influenced by nucleation density

Figure 8 (left) [22] demonstrates that normally PLLA is

easy to keep in the amorphous state: even at a slow cooling

rate of 5 �C min-1 the glass transition (or any other

temperature in between Tg and the melt) can be reached

without any sign of crystallization, which is confirmed by

the magnitude of the step in cp at Tg. If the sample is cooled

at 10 �C min-1 and subsequently heated at various rates

(see Fig. 8, right), cold crystallization occurs at

10 �C min-1 but it is effectively suppressed at the higher

rates of 100 and 300 �C min–1.

Thus, heating at such high rates clearly eliminates cold

crystallization and as a result the heating curve reflects

the preceding cooling scan, i.e., is a reflection of an

amorphous sample. These results show that it is possible,

coming from the glass in an amorphous state, to reach

any temperature between Tg and the melt while keeping

the sample in an amorphous state. In this way isothermal

crystallization at a specific temperature coming either

from the melt (‘hot’ crystallization) or from the cold side

(‘cold’ crystallization; from below or above the glass

transition) is possible.

Very peculiar is the observation that, although the

samples stay amorphous during cooling at rates of 5, 10,

50, 100, and 300 �C min-1 into the glass, the subsequent

isothermal (cold) crystallization curves at e.g., 100 �C are

quite different (see Fig. 9, right). It most probably means

that—depending on the cooling rate—more or less nuclei

become activated during cooling though they do not give

rise (yet) to crystal growth. However, when there is

enough time for growth—as during the isothermal wait-

ing time—it will happen nevertheless. Thus, cooling at

lower rates results in a higher activity of nuclei compared

to samples cooled at higher rates; the cooling rate

modulates the number of active nuclei formed when the

glass state is reached, while all nuclei can become active

in time during subsequent isothermal crystallization

(Fig. 9, left) or in heating, resulting in the same final

morphology. Recently this concept has been confirmed

for polycaprolactone using a fast scanning (chip) calo-

rimeter [23].
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Water: from a nuisance to a prospect of utilization

Fast and full dissolution of PAs in water

Based on a study done at DSM in the 1990s [24], research

has been performed [25, 26] into the full dissolution of

PAs, like PA6; PA6.6 and PA4.6, in water and in other

solvents like methanol, ethanol, butanol, etc. Usually water

is seen as a problem for PAs because water uptake by the

PA can cause blistering in electronic components. How-

ever, it turned out that if the water is kept in its liquid state

also at higher temperatures, it acts as a very effective

solvent. Such liquid state can be realized under pressure

using an autoclave, an extruder, or on a small-scale simply

by using a hermetic closed pan, like the stainless-steel

high-pressure pans for DSC.

Figure 10 shows that dissolution is fast and can be

realized during the first heating by DSC, without any stir-

ring. Measurements reveal a lowering of the crystallization

and melting temperatures of approximately 60 �C: 130 and

165 �C for PA6 in water compared to 184 and 227 �C for

pure PA6 for onset crystallization and end melting,

respectively. In case of PA4.6, the solvent-induced

depression of the transition temperatures is even higher:

100 �C in water and 80 �C in methanol and ethanol. The

fact that the depression is independent of the concentration

over a large range, 10–70 mass% for PA6 in water (see

Fig. 11, left) is in line with an upper critical temperature

liquid–liquid demixing, which has been confirmed by

optical measurements.

The synchrotron time-resolved WAXD measurements

reveal a pattern at room temperature that displays two

sharp peaks, at 2h = 19.6� [a1(200)] and at 2h = 24.0�

[a2(002) ? (202)] on top of a halo due to water and non-

crystalline PA6. These sharp peaks point to the a-structure.

When the mixture is heated at 5 �C min-1 (Fig. 11, right),

the position of the (200) reflection (related to an intra-

hydrogen-bonded sheet distance) remains almost identical,

whereas the position of the (002) ? (202) reflection (cor-

responding to the inter-hydrogen-bonded sheet distance)

shifts to lower angles. This behavior is characteristic for

PA6. At approximately 165 �C, the PA6 dissolves in water,

in agreement with the DSC results, and accordingly the

halo amplifies. Also the synchrotron time-resolved SAXS

experiments confirm the DSC results. A detailed analysis

of the X-ray measurements and additional calculations of

possible void volumes learns that the water is located

within the amorphous regions and does not enter the

crystallites. Also it appears that the mobility of the chains

is enhanced by the water, which is probably caused by

weakening and breaking of hydrogen bonds by water

uptake. This also explains that crystallization in water
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increases the DSC crystallinity significantly to approxi-

mately 39%, compared with approximately 27% for pure

PA6.

EO copolymer and PP droplet dispersions in water: small

events on a big scale

Heterogeneous-, fractionated-, and homogeneous nucle-

ation in case of polymer blends and composites have

become topics for research linking up with studies on

confined crystallization. Semicrystalline polymers gener-

ally crystallize through heterogeneous nucleation on

impurities (catalyst residues, additives, processing aids,

etc.) or foreign surfaces (e.g., a mold) that act as nucleation

substrates.

In case of dispersions of particles in a matrix, particles

having large sizes with many seeds crystallize at the

common bulk crystallization temperature. However, if the

polymer is dispersed into a larger amount of smaller par-

ticles, then part of them may be free of the most active

seeds, giving rise to fractionated crystallization at some

extra degree of supercooling.

In case their nucleation is not triggered at all by a for-

eign active surface, crystallization via homogeneous

nucleation will occur at an even larger supercooling. As

suggested, one of the available routes—besides quenching

and fast cooling using a fast scanning (chip) calorimeter—

to realize homogeneous nucleation is minimizing the vol-

ume for the polymer molecules by realizing many particles,

toward the point where most or all of the particles do not

contain seeds anymore. Thus, homogenous nucleation and

crystallization at much lower temperatures than usual are

realized typically by the way of making sub-micrometer-

sized dispersions.

Many droplet-in-matrix systems have been obtained

by melt blending of a polymer with another polymer

[27]. Here, an example is given of fractionated and

homogeneous nucleation of dispersions of crystallizable

polyolefins in water as the matrix [28, 29]. Water has been

selected for various reasons. Firstly, since water is highly

polar and the polymers used in this work are completely

apolar, it minimizes the possibility of any influence of the

matrix on the crystallization behavior of the dispersed

polymer, which has been observed for other low-molar

mass matrices. Secondly, until now, water has not shown to

be of much use for e.g., polyolefins. Therefore—water

being an abundant and natural source and from an envi-

ronmental point of view—it would be of great advantage if

it could lead to any application.

Thus, very stable and high-solid water-borne dispersions

of homogeneous EO copolymers (Fig. 12) and of maleic

anhydride-grafted polypropylene (MA-g-PP) (Fig. 13)

have been prepared in a controlled way on a big scale,

including particles having sizes down to sub-micrometer

scale. A study of crystallization of the dispersed particles

by DSC reveals a correlation between particle size distri-

bution (PSD) and crystallization mode. Dispersions of PP-

g-MA of sizes from 100 to 200 lm down to sizes below

0.04 lm have been produced. The PSD in Fig. 12 shows

only an extremely small part (2%) of the sample because

particles having a size \0.04 lm are not detected by the
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instrument used. Figure 13 presents the DSC cooling

curves of samples, arranged in order of decreasing particle

size (from top to bottom), showing a tendency of crystal-

lization according to, respectively, heterogeneous, via

fractionated toward homogeneous modes, and mixtures

thereof. Thus, it is observed that the smaller the particles,

the smaller the fraction of polymer molecules nucleating

heterogeneously, and the larger the amount of polymer

material crystallizing at lowered temperatures. The lowest

crystallization peak temperature found in these experi-

ments, 33 �C for the sample at the bottom of the Fig. 13

left, is lower than any other previously reported value in

literature for PP in similar conditions, and possibly reflects

homogeneous nucleation. Because the crystallization peak

temperature of the bulk MA-g-PP used here is 110 �C, the

supercooling realized is approximately 77 �C.

Compared to the cooling curves, the heating curves vary

much less for all dispersions, except for the difference seen

with respect to the double melting behavior of the bulk

polymer and the single melting behavior of the dispersions.

Thus, the high-temperature properties are preserved for all

dispersions, irrespective of the crystallization mode, by

reorganization phenomena.

PA6-dispersed-in-EO copolymer matrix: improved

temperature resistance of the matrix

EO copolymers in which a PA6 phase is finely dispersed by

means of compatibilization using grafted maleic anhydride

in a polyethylene chain, PE-g-MA, have been studied. The

droplet size distribution is reflected in the DSC curves as

expected, while the resulting fractionated crystallization

behavior of dispersed PA6 droplets has already been

studied using different amorphous materials as matrix.

Typical effects associated to crystallization in droplets such

as a decrease in crystallinity occur, while, due to the fine

dispersion of the PA6, fractionated/homogeneous crystal-

lization takes place, resulting in an extra supercooling of

around 50 �C compared to the PA6 bulk crystallization

temperature. The lower crystallinity in the dispersed sys-

tem is probably caused by hindered crystallization due to

confinement, leading to cold crystallization in subsequent

heating. What makes this system peculiar is that, firstly, at

room temperature the matrix is not amorphous but semi-

crystalline. Secondly, the crystallization process of the

dispersed phase takes place when the matrix is still in the

melt state what prevents crystallization of the PA6 droplets

via nucleation induced by solidification of the matrix, and

thirdly, the mechanical properties of the matrix are

improved much more than expected.

Figure 14 shows the storage modulus (E0) and the DSC

curves in heating for the EO copolymer used and for the

blend: PA6-dispersed-in-EO matrix [30, 31]. The modulus

of the pure EO copolymer drops above 100 �C, once the

irreversible flow of the polymer chains starts in the melt

state, which is expected for a system that is not chemically

crosslinked. Thus, it is no longer possible to measure the

tensile mechanical modulus with the DMTA apparatus

because of the macroscopically fast flow of the sample.

For the blend, up to 100 �C, the storage modulus is quite

similar to that of the EO copolymer. However, once the

matrix is molten, see the corresponding DSC curve, the

storage modulus still keeps its value, which is quite

exceptional. This behavior continues till the main melting

of the dispersed PA6 starts. The measured E0 values (higher

than 1 MPa) above the melting point of the matrix are

approximately comparable to those of crosslinked elasto-

mers. This high-temperature behavior is not expected at all

for a ‘normal’ blend with dispersed droplet morphology:

one would expect no connections between the PA6 parti-

cles, and at temperatures above the melting range of the

matrix the modulus should drop because of flow of chains

in the melt. Instead, it is even possible to measure the

tensile modulus of the blend up to 200 �C, that is, until the

melting of the dispersed PA6 droplets starts. It turns out

that at the same time, the system shows dimensional

stability.

The explanation of this high-temperature effect comes

from the architecture of the molecular system and is found

in a slowed-down flow dynamics of the EO matrix chains.

The mixing and interactions of these chains with the

compatibilizer chains increases the entanglement density.

While the compatibilizer chains are connected to the

droplets, these function as physical crosslinks. The

intriguing behavior of this system at higher temperatures,

resulting in improved mechanical properties compared to

what would be expected for a conventional blend having
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the (qualitatively) same morphology and composition,

allows extending the use of the EO copolymer to applica-

tions for which dimensional stability is required at high

temperatures.
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